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J .  Phys. A: Math. Gen. 17 (1984) 1829-1842. Printed in Great Britain 

Tunnel transitions and vacuum polarisation in the potential 
well under the influence of an electric field? 

V P Oleinik and Ju D Arepjev 
Institute of Semiconductors, Academy of Sciences of the Ukrainian SSR, prospect Nauki 
115, Kiev, 252028, USSR 

Received 30 March 1983 

Abstract. The exact solution of the problem of the vacuum polarisation and tunnel 
transitions of an electron out of the potential well under the influence of an electric field 
is obtained. The conclusion drawn earlier concerning the existence of the intense vacuum 
polarisation mechanism by the external field, for which the number of electron-positron 
pairs created in the field is proportional to the energy levels width of elementary electron- 
positron excitations, is confirmed. The estimates of the pair creation probability allow us 
to think that the atom ionisation in a steady electric field is accompanied by creation of 
electron-positron pairs which can be quite well registered experimentally at the relatively 
weak fields. I t  is shown that at the sudden switching on of an electric field, the value of 
the tunnel current of electron emission out of the well is affected appreciably by allowance 
for the positron band. 

1. Introduction 

In this paper the non-stationary problem of the vacuum polarisation and tunnel 
transitions out of the potential well under the influence of an electric field 8 switched 
on instantaneously at some moment of time is considered. The tunnel current occurring 
both in the one-electron state which corresponds to the bound electron state in the 
potential well before switching on the field 8 and in the vacuum state is calculated. 

The electron tunnelling out of the potential well and the creation of electron- 
positron pairs are due to the decay of quasistationary states being formed in an electric 
field. When considering these phenomena we use the Drukarjev’s method (Drukarjev 
1951), which offers the most rigorous and consistent way of describing the decay 
processes. 

As is seen from a comparison of the results obtained and the non-relativistic 
tunnelling theory results (Oleinik and Arepjev 1983), when considering the electron 
tunnelling out of the well in the case of sudden switching on of an electric field it is 
important to take into consideration the positron band which markedly affects the 
value of tunnel current. For the one-level well the maximum value of tunnel current 
is considerably larger than that in the non-relativistic theory. 

The exact solution of the vacuum polarisation problem given in the paper confirms 
the conclusion drawn earlier (Oleinik 1981) concerning the existence of the pair 
creation mechanism for which the number of pairs created in an external field is 

t The main ideas of the present paper are briefly outlined in Oleinik and Belousov (1983). 
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proportional to the energy level width of elementary excitations of the electron- 
positron field. According to numerical estimates presented, the vacuum polarisation 
due to the appearance and decay of quasi-stationary states is considerably stronger 
than that caused by the steady and uniform electric field in the absence of the potential 
well (Schwinger 1951). 

In § 2 the general formulae for the electron current density in one-electron and 
vacuum states are given. In § 3 the correction to the energy and the width r of the 
quasi-stationary electron level in the well are calculated. The formula for the electric 
current of electron-positron pairs created in an electric field is derived. The calculation 
of the electron tunnel current out of the well is given in § 4. The formulae for the 
wavefunctions of a relativistic electron in the well and in an electric field are presented 
in the appendix. 

2. General formulae for the electric current density 

Let us consider the electron-positron system in the potential well 

v,(z) = -v,e(Z+L)e(-z), V O > O ,  (1) 

where V, and L are the depth and the width of the well. The electron-positron field 
operator of the system in the Schrodinger picture may be represented in the form (for 
simplicity, we confine ourselves to investigating the one-dimensional model) : 

In this expression q E L y ( z )  and P“,’(z) are the solutions of the Dirac equation in the 
field (1) (see appendices); the signs ‘+’ and ‘-’ correspond to the electron and positron 
states, respectively; the functions qELy and q“,’ describe the continuous spectra states 
and the bound states of electron in the well, respectively; po and a are the energy and 
the spin quantum number, v ( v  = il) is the quantum number characterising the doubly 
degenerate states with the fixed values of po and a;  n is the quantum number pertaining 
to the discrete electron levels with the energy pori in the well; apouu, p ~ , u y  and aflu are 
the second quantisation operators for the fermi-particles obeying the ordinary anticom- 
mutation relations and equalities apouv/O) = &uyIO) = afluIO) = 0 (IO) is the vacuum 
ket-vector). 

Let us suppose that at the moment of time t = 0 in the range z > 0 the electric field 
with intensity g is switched on. The total potential energy of the system is given by 

V ( z ,  t )  = V o ( z ) - e o 8 z e ( z ) e ( t ) ,  e o 8  > 0. (3) 

The electron-positron field operator in the electric field is now written as follows 
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Here $ELy(z,  t )  and $ z ) ( z ,  t )  are the Dirac equation solutions in the field with the 
potential energy (3) satisfying the initial conditions: 

The electric current density in the vacuum state IO) and in the state (Y;~IO) corres- 
ponding to the bound electron state in the well is defined by the formulae 

Substituting the field operator expression (4) into (6) we arrive at the following 
relationships: 

j d z ,  f )  = e c dpo[4&Ly(z, t)l+az$b;JLy(z, t ) ,  
U Y  --CO rm (7) 

j n u ( z ,  f )  =jL.(z, t )  + 4$z)(z, t)l+.z$cl“,’(z, f ) .  

With the aid of the formulae in the appendices one can easily prove the equalities 

It is seen from (7) and (8), that 

jL. (z,  t )  =jnU(z ,  t) = O  at ?=SO. (9) 

The quantities jL: and jnU have the following physical meaning: j v  is the electric current 
density produced by electron-positron pairs created under the influence of the electric 
field, jno is the tunnel current density (the emission current) out of the potential well. 

According to (7) the calculation of the electron current density reduces to evaluating 
the wavefunctions $&Ly(z, t )  and $ z ) ( z ,  t). We expand these functions in terms of 
the exact solutions of the Dirac equation in the field 

V (  z )  = V,( 2) - eo8ze( z )  (10) 
(see appendices). The expansions mentioned above are of the form (at t 3 0) 

f + m  

+ m  

$z)(z, t )  = dpb exp(-ipbt) c a,~,4nc+)4,~,4z), (12) I_, U’ 

where apbu,( p o w )  and aPbu,( nu) are the constant coefficients defined by the initial 
conditions (3,  the functions + p b U , ( ~ )  being determined by the formulae (A2.2). In 
the expansions (1 1)-( 12) we have retained only the eigenfunctions 4 p h o , ( ~ )  with the 
energy p b ~  (-m, +m). Allowance for the eigenfunctions with energies lying outside 
the above mentioned interval would allow one to calculate the wavefunction part which 
describes the spreading out of the wavepacket in time (Drukarjev 1951, Oleinik and 
Arepjev 1983); in this paper, however, we shall not be interested in the spreading out 
of the wavepacket in time. In this case the main contribution to the electric current 
density comes from the poles of integrands in (11)-(12) which occur only at 
Re p b ~  (-m, m). 
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3. Electron-positron pair creation 

Let us consider the wavefunction (Clb&(z, t ) .  The expansion coefficients (11) are 
expressed by the formulae 

+m 

dz 4&(~) (~b iL (z )  

Hin,(z) = -eo8z. 

Making use of the formulae in the appendices for the wavefunctions 4pAu, and (p&iy 
the coefficients (1 3) may be transformed into the form 

where the following notation is used 

Taking into account the equalities (14) and (A2.2) the wavefunction, (clb& may 
be written as follows (at z > 0 )  

+ m  

(~lb$(z, t )  = - - (2r)- 'dU en''* 1 dpb exp(-ipbt)( pb- pol-' 
- m  

X {rL-)[c;*A\-)( pb, P O )  + c'z*A$-'( PA, PO)] 

+ r?)[c{*A(i+)( pb, pol + ci*A!i+'( pb, PO)N 

x i $  ub( id /dz )~ - ih (771)+(A/c ' z* )ub( id /dz>9 iA- l ( i~ ' )  , (17)  ) 
where the prime (') means that in the corresponding quantity one ought to replace po 
by pb (for example ci = c l ~ p ~ l = p J .  

The integrand poles in (17) coincide with zeros of the functions c;* and c;*. Taking 
into account (A2.3), we represent the equalities c t  = O  ( n  = 1 , 2 )  in the form 

( a ' T + a ' ' r l ) / ( a ' T - ~ * , ) = ~ 2 / (  Vo-ia:), ( n  = 1,2) ,  (18) 
where 

d 
d 770 

(2e08)'"- ln - 1( i t70),  (19) = -e-in/4 
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roots of the dispersion equation (A1.8), we obtain the following equation for defining 
the quantities Ap,, and r:): 
dG(p,)/dp,lpo,,i(APo, -ir ' , ' ))=(Aa,)*[~~ COS K ~ L + ( X I  -ivd sin K:L],=,;;. 

From (28) we get 

(28) 

The quantities Ap,, and r'," represent the shift and the width of energy level of 
a quasi-stationary state appeared in the electric field. In order to compare these 
quantities and the analogous ones (AE, and r,) of the non-relativistic theory (Oleinik 
and Arepjev 1983), we pass to the non-relativistic energy reading by putting 

p , = m -  V,+E. (30) 

Then 

x i  =[2m( Vo- E)]"', K 2 =  (2mE)"*, 
(31) 

Using the last formulae and retaining only the largest terms, we obtain (in the ordinary 
system of units) 

r(*) = E 
rt( v,-E) -exp(-2f)(l + $ x , ~ ) - ' I ~ = ~ I p i .  v, 

The quantities Ap,, and I'!,+) coincide exactly with the non-relativistic ones (AE, and 
r,). 

At t - z > O  the integration path in (17) may be closed in the lower half-plane of 
the complex variable pb. Taking into account that it is only the function (c;*)-' that 
has singularities in the lower half-plane of pb and retaining in (17) only the singular 
terms, we obtain 

For convenience, we represent the expression (33) in the form 
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Let us calculate the electric current density in the state (34) keeping only one term 
in the sum over n :  

IgnJ pO)l2 exp(-2rj;"(t - 2)). 
( - 1  + (-) -2m2e-nA/2 (36) [+pouyI % + p o m Y  - 

Here the equality 

is taken into account. 
Further calculation of the vacuum current density reduces to  the calculation of the 

coefficients A Y ' ( &  po)  defined by (15). With the aid of the asymptotic formulae (23) 
and (24) we obtain the following representation: 

where 

jb2 = ( p ~ + e , 8 ~ ) ( 2 e , 8 ) - " ~ ,  K ]  = K1(2e08)-1/2. 

The integration in (38) by parts using the equality 

eC(') d z  = [dG(z)/dz]- '  deG('), 
where 

dx(A - X 2 + & ) I / ' F i K  1 9  z 

yields 

Taking into consideration the equalities ( 3 7 1 4  39) we arrive at the following representa- 
tion for the coefficients A?)( ph, p o )  

At*) ( p ; ,  =f(&)li22-1A/2 e ~ n / l - ~ A / 2  r 1 ( 1  +$A)( l+ (  @n* K'l)/A1/2) 

(40) 
X A1I4(A -po  - 1 2  ) - 1 / 4  [ (A  -&2)1'2*i<l]-2 exp[$A-'/2(A -&y2]. 
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With the aid of relationships (35), (36) and (40) we find 

i o n  C [ ~ c l p ~ - Y I  a z $ p o - v  
(-) + (-1 

U Y  

Making use of the equalities (16), (A1.12) and (A1.13), one can readily derive the 
formula 
C [dv12/r~-l&)+ ry1Q,+'l2 

"=e l  

= ( 8 T m  2 ,  - ' ( 1 po + K I I /  K ) { 1 Q!,-)12 + [( PO - K 1 */ m '31 a'," l 2  
+ /P'I"[-*[""Q~'- 'P":PT"'+ cc]}. (42) 

The quantity jpon decreases as p i 6  at p i  >> m 2 .  
Let us confine ourselves to the non-relativistic values of the quantity po: 

/po l -  m = A s  Vo-E,. 

In this case the expression in curly brackets in (42) slightly depends on po and equals 
unity in the order of magnitude. To obtain the numerical estimate, we replace this 
expression by unity. After some simplifications we obtain: 

(43) 

According to (43) the dependence of the quantity jpon on the field is of the form: 
2 1 + 1  i p , n - ( e o 8 )  r n  

The appearance of the factor exp[-2rj;"( t - z ) ]  in (43) allows one to interpret the 
quantity jpondpo in the following way. This quantity is a flux of electrons created in 
pairs together with positrons in the well under the influence of an electric field 8 and 
moving away from the barrier in the direction z + +CO at the velocity of light, the 
energy of positrons formed in the field lying in the range (-pO, -po- dpo). It is obvious 
that the quantity -eo SI: dpojpo, = Q at t -  z > 0, z + +CO is the total electric charge 
of electrons created per unit time in the field under consideration. The peculiar feature 
of the given model consists in the fact that in the range z + --CO the positron flux does 
not occur; the total electric charge of positrons equal to -0 is concentrated near the 
boundary z = -L of the potential well. 

Let us estimate the quantity 

I v n  ' sz C , + A J   PO Lon. 
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assuming that the condition A<< Vo- E, is satisfied. We may approximately put: 

Estimate the vacuum current for the following values of parameters of the problem 

% = 5 x lo6 v cm-', Vo = 1 eV, En/Vo=$,  A/(V"-E,)=i.  (44) 

Write out some auxiliary quantities 

b = Vo/ eo% = 0.2 X cm, A = m2c3/2fieo8 = 1.3 x io9, 

A -bg, = 0.3 x io4, 2[, = 4.8. 

Putting additionally x l L  - 1, we obtain 

jU,, - IO-'OS-~. (45) 

It should be emphasised that the pair creation probability in electric field in the presence 
of the potential well is by no means exponentially small. Remember that according 
to Schwinger (Schwinger 1951) the pair creation probability in an electric field in the 
absence of the well is proportional to the exponent e-2nA which equals exp(-8 X lo9) 
for the chosen parameters (44). Compare this quantity with the exponent exp(-2fn) 
involved in (43): for the same parameters the latter exponent is equal to exp(-4.8)! 

4. Electron emission 

Now we turn to calculating the tunnel current of electron emission defined by the 
wavefunction +zj(z, t )  (12). The coefficient a,;,,(ncr) in (12) is expressed by 

Using the formulae in the appendix we obtain the following representation 

a,;,.(na) = -2m 2 - *  6 ,~6 , (C; , ,  - +.'-ln)(pb-p~on))-l. 

X[dYPh)AI(Ph, Pbo,')+ CT(Pb)A,(Pb, PiPn))lLh (46) 

A1(pL,p&t)) = e,$ I o ~ d z ~ 9 1 A ( i v ~ ) + ( ~ b ~ - i X ' l n )  e'"/491A-l(iv')]z e-"in', 

(47) 
- ( O )  - i G  - 1 e'"/49-,,(77')1z e-xlnz, 

I n  A A2(pb, pb?)=eOg dZ[9-!A-1(??')+(POn IoW 
where 

-(U) - ( 0 )  1/2  on - ~ o n / ( 2 e 0 8 ) ' / ~ ,  X'ln = x,/(2eo%) lP"=Pi:l:, 

7' = e-'"/4[2/(2e08)'/2](pb+ eo8z). 

The formulae (46) and (47) are analogous to (14) and (15). As is seen from (47) and 
(15) the coefficient A,,,( pb ,  pi?) may be obtained by the substitution T i K l  + - x l n ,  
po+pb? made in the formula for AE'(&,,p0). 

Using the formulae presented above and performing the calculations in the same 
way as in the preceding section, we obtain the following expression for the wavefunction 
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Calculate the electron current density in the state +:'( z ,  t )  keeping only one term 
in the sum over A in (48): 

j n  ~[+(+;I+~~+: ;  = z m 2  e - a A / 2 / g _  m ( n )  ( 2  e-21'!;V-z) 

lGl + & - , I 2  = e-2xlL 

(49) 

Further, take into account the equality 

(at Po = PA:') 

and make use of the formulae for the normalisation constant 8,, (see appendices) and 
for the function A y ' (  pb, po) (40). The final result is: 

(50)  
Consider the case of the one-level potential well. Assuming m = n and using 

formula (34) for the energy level shift, we arrive at the following expression for the 
tunnel current 

j n / r - z = O  = 2En[(  Vn- E n ) /  Vn]( 1 +fxI,L)-' exp[-$(A - ~ ~ n ) 3 ' 2 A - ' / 2 ] .  ( 5 1 )  

For the chosen values of parameters (44), we obtain 

in -4X  10l2 s-' .  

Note that expression ( 5 1 )  coincides exactly with the formula for tunnel currcnt 
derived within the stationary non-relativistic theory, which corresponds to the adiabatic 
switching on of an electric field. At the same time the tunnel current (51) is much 
greater in magnitude than the emission current being predicted by the non-relativistic 
theory in the case of sudden switching on of an electric field (Oleinik and Arepjev 
1983). Thus, the tunnel current value (at sudden switching on of the field) is affected 
appreciably by allowance for the positron band. 

According to the relationships (43) and (51) the electric current densities in the 
vacuum state and in the one-electron state corresponding to the discrete level in the 
well contain one and the same exponential factor. The difference between their 
pre-exponential factors is, however, very considerable. This is due to the fact that in 
the present problem the electron-positron pair creation is a two-step process: first, 
under the influence of an electric field the negative-frequency electrons go over to  the 
discrete levels in the well with the probability proportional to g2 and then the tunnel 
passage of electrons out of the well through the barrier formed by an electric field 
takes place. 
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The electron-positron pair creation mechanism investigated in the paper is due to the 
appearance of the non-zero width of energy levels of elementary excitations. In an 
electric field the electron-positron vacuum is polarised and transformed into the 
unstable medium, the elementary excitations of which are disintegrated and owing to  
this induce the tunnel electric current. 

As is known (Landau and Lifshitz 1958, Blokhintsev 1961) the atom ionisation in 
a steady electric field is the tunnel electron transition through the potential barrier 
formed by the field. The tunnelling in an electric field seems to be a phenomenon 
which may be accurately enough described by means of the one-dimensional potential 
well model. Therefore, the results presented here allow us to think that the atom 
ionisation in an electric field is accompanied by processes of the electron-positron pair 
creation, which may be quite well observed at relatively weak fields. Really, assuming 
the pair creation probability in the hydrogen atom field and in an electric field to be 
equal to (45), we find out that each second in 1 cm3 of the hydrogen gas taken at 
normal conditions the pairs are created with the total energy of the order of J. 

As was explained above, the distinctive feature of the model considered in the 
paper is the absence at z -+ --CO of the flux of positrons created in the well. It is due 
to the fact that the applied field 8 is different from zero only at z > 0. One may show 
that if the field 8 is non-vanishing at all values of z there will be a potential barrier 
at z < 0 and, consequently, a flux of positrons will occur at z -j --CO. Positrons penetrat- 
ing the barrier may reach the plate of a capacitor and annihilate with electrons of -the 
plate, producing destructions (microexplosions) in it. This process of annihilation need 
not be accompanied by the X-ray emission. 
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Appendix 1. Wavefunctions of the relativistic electron in a potential well and in an 
electric field 

We seek the solution of the Dirac equation 

( id  - yo V - m)q(  z ,  t )  = 0 (Al.1) 
in the field with the potential energy V = V(z)  in the form 

(A1.2) 

(A1.3) 

P- 
P O -  V + m + i d / d z  

P- 
PO- V - m + i d / d z  

po- V + m + i d / d z  
-P+ 

-PO+ 
P+ 
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The function $( 2) satisfies the equation 

[d2/dz2+i d V/dz +( po- V)'- m 2 - p :  -p2,]4(z) = 0. 

The potential well. The solution of the equation (A1.4) in the field 

v = - v , e ( z + L ) e ( - z )  ( Vo =constant) 

must obey the following continuity conditions 

(A1.4) 

(A1.5) 

4 (2) Iz =-L+O = 4 (2) lz =-L-O,  

4(z)l ,=+o= 4(z)lz=-o, 

d 4  (z ) /dz  I =-L+o = d 4  ( z ) /dz  I =-L-o + i VO4 ( -L) ,  
(A1.6) 

dCt;(z)/dz/z,+o = dCt;(z)/dzl,=-,-iV04(O). 

These conditions may be derived most simply by integrating the equation (A1.4) over 
two ranges lying in the vicinity of the points z = -L and z = 0. 

The wavefunctions describing the electron bound states in the field (Al .5)  are of 
the form ( p i < m 2 + p : ,  p : = p t + p : ) :  

(pE)(r, t )  = qL) (z )  exp(-ipO.t+ip,x+ip,y), 

cpz)(z) = 8,u,,(i d/dz){B(-z - L )  , , I n z +  e ( z  + L ) B ( - z )  (A1.7) 

x eikznz+&-,, e-lkZnz)+ ~ ( z ) ( & ~ , , + & - ~ , )  e-X1nz}, 

6, = 6 j p o = p ~ z ,  u,,,(i d /dz)  = u,(i d/dz)l,,,,,;;) etc 

1812=$x1K:m-2v01(2po+ VJ-'[I + x l ~ ( p o +  v0)/(2pO+ v,J-' exp 2 x , ~ ,  

where - -  

6'- =$[I + ( T ( V ~ - ~ X ~ ) / K ~ ]  e x p ( i a ~ , ~ - x , ~ ) ,  
2 112 x1 = ( m 2 + p ? - p i ) ' i 2 ,  K2=[(Po+ I 

The wavefunctions cp",' obey the orthonormalisation condition 

dz[(p",'(z)]'(p~~s(z) = S,.,6,t,. J 
The quantities pbo,', representing the energy levels of electron bound states, are the 
roots of the dispersion equation 

(K:-X:- Vi)Sin ~ ~ L - ~ ~ I K ~ C O S  K & = 0 .  (A1.8) 

For simplicity, we confine ourselves to considering the shallow potential well Vo<< m. 
In this case the equation (A1.8) has the roots only if the inequalities ( p o +  V,J2- m 2 -  
p :  > 0 ,  p t -  m 2 - p :  < 0 are fulfilled. Note that these inequalities can be carried out 
simultaneously only for electron states, i.e. at po > 0. 

We shall from now on put p x  = p y  = 0, confining ourselves to the one-dimensional 
problem with the variable z. 

The wavefunctions of the continuous spectra states ( p i  2 m2)  are defined by 
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where the ‘+’ and ‘-’ signs correspond to  the electron ( po 2 m )  and positron (Po< - m )  
states, d ,  is the normalisation constant, the constants y1 and y 2  are  defined by the 
equalities 

(A1.lO) 

(Al .  13) 

Appendix 2. The potential well and the steady electric field 

We present the solution of equation (A1.4) in the field 

V = - Vn6(z+L)8( -z ) -  e,,%ze(z) (A2.1) 

at p ; ~  m2. Taking into account that the continuity conditions (A1.6) a re  also valid 
for the field (A2.1) we obtain the following formulae for the wave electron function 

$ p o , ( ~ ,  t )  = e-lPord+JZ), 

$ p J  z )  = 8uU(i d/dz){ e ( - z  - L )  ex] ‘  + e( z + L )  e ( - z ) (  G I  elrc?’ + e-’“>‘) 

+ e(z)[cl 9 - ~ A  ( q )  + c29~A- l ( i~ ) l}?  (A2.2) 

where the quantities x l ,  K ~ ,  and 6, are defined by the equalities (A1.7) and the rest 
of the notation has the following meaning: % , A ( q )  and dl ,_l( iq)  are the parabolic 
cylinder functions, 

A = m2/2e,8, q = e-”’‘l, l = 2 ( 2 e o ~ ) - 1 ’ 2 ( p n +  ~ O E Z ) ,  
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The constants c1 and c2 are related by the equality (at po = Re po)  

Alc1I2 = )c212. (A2.4) 

The following normalisation conditions are carried out 

(A2.5) 
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